124 research outputs found

    The Assessment of Hydrogen Energy Systems for Fuel Cell Vehicles Using Principal Component Analysis and Cluster Analysis

    Get PDF
    Hydrogen energy which has been recognized as an alternative instead of fossil fuel has been developed rapidly in fuel cell vehicles. Different hydrogen energy systems have different performances on environmental, economic, and energy aspects. A methodology for the quantitative evaluation and analysis of the hydrogen systems is meaningful for decision makers to select the best scenario. principal component analysis (PCA) has been used to evaluate the integrated performance of different hydrogen energy systems and select the best scenario, and hierarchical cluster analysis (CA) has been used to verify the correctness and accuracy of the principal components (PCs) determined by PCA in this paper. A case including 11 different hydrogen energy systems for fuel cell vehicles has been studied in this paper, and the system using steam reforming of natural gas for hydrogen production, pipeline for transportation of hydrogen, hydrogen gas tank for the storage of hydrogen at refueling stations, and gaseous hydrogen as power energy for fuel cell vehicles has been recognized as the best scenario. Also, the clustering results calculated by CA are consistent with those determined by PCA, denoting that the results calculated by PCA are scientific and accurate

    Characterization of the IFN-γ T-cell responses to immediate early antigens in humans with genital herpes

    Get PDF
    BACKGROUND: The IFN-γ ELISPOT assay has been used to examine the T-cell repertoire for many disease states in humans but, as yet, not genital herpes. Using overlapping synthetic peptide libraries, an IFN-γ ELISPOT assay was established that could measure CD4 and CD8 T-cell responses to HSV-2 antigens in patients with genital herpes. RESULTS: In unexpanded T-cells isolated from peripheral blood, CD4 responses were readily measured against four immediate early antigens (ICP0, ICP4, ICP22 and ICP27), VP22 and gD. The CD4 responses were characterized by a low number of positive cells which produced large ELISPOTs. CD4 responses had a broad specificity and within individual patients several of the test antigens were recognized. In contrast, CD8 responses were found only in approximately 50% of patients and were typically specific to a single antigen. When disease status and immune responses were compared, an enhanced CD4 response to ICP4 in patients with a low recurrence rate was found. The ICP4 response was striking in three HSV-1 single positive genital herpes patients. CONCLUSION: The survey of T-cell responses is an important step to understand the host cellular immune response in individuals with genital herpes. The assay described here has the capability of measuring CD4 and CD8 T-cell responses that may be used to correlate disease status with specific immune responses. In an evaluation of 18 subjects a trend of positive responses to an immediate early protein, ICP4, was found in individuals that had a low rate of disease recurrence

    Conceptual Design of Non-ideal Mixtures Separation with Light Entrainers

    Get PDF
    A method is proposed to study the separation of minimum-, maximum-boiling azeotropic, and low volatility mixtures with a light entrainer, to investigate feasible regions of the key operating parameters reboil ratio (S) and entrainer - feed flowrate ratio (FE/F) for continuous processes. The thermodynamic topological predictions are carried out for 1.0–2, 1.0–1a, and 0.0–1 Serafimov’s class diagrams. It relies upon the knowledge of residue curve maps, along with the univolatility line, and it enables the prediction of possible products at the bottom of the column and limiting values of FE/F. The profiles of the stripping, extractive, and rectifying sections are calculated by equations considering S and FE/F, and they bring information about the location of singular points and possible composition profile separatrices that could impair process feasibility. Providing specified product composition and recovery, the approximate calculations are compared with rigorous simulations of extractive distillation processes. Separating non-ideal mixtures using a light entrainer provides more opportunities for the case when it is not easy to find an appropriate heavy or intermediate entraine

    Novel Procedure for Assessment of Feasible Design Parameters of Dividing-Wall Columns: Application to Non-azeotropic Mixtures

    Get PDF
    Dividing wall columns (DWCs), as a subset of fully thermally coupled distillation systems (FTCDS), is considered as one of most appealing distillation technologies to the chemical industry, because it can bring about substantial reduction in the capital investment, as well as savings in the operating costs. This study targets on how to improve the energy efficiency of DWCs by achieving their well-designed feasible parameters. Two methods are applied to study the effect of liquid and vapor split ratios including a shortcut method and a method of systematic calculations by using differential equation profiles. In the latter approach, differential composition profiles in each column section are obtained by considering feasible key design parameters. The finding of pinch points for each section profiles allowed determining the limiting values of the operating parameters. The intersections of these profiles are used to get well-designed feasible parameters of the liquid and vapor split ratios in an attempt to obtain the desired purities of the top, bottom, and side-stream products. The obtained parameters are validated by rigorous simulations. Three types of case studies involve the separation of hydrocarbons (n-pentane, n-hexane, n-heptane), aromatics (benzene, toluene, p-xylene), and alcohols (ethanol, propanol, butanol)

    Multi-objective sustainability optimization of CCHP systems considering the discreteness of equipment capabilities

    Get PDF
    The value of waste heat had led to an extensive study on Combined Cooling, Heating and Power (CCHP) system in recent decades, but the following three research gaps still need to be tackled to achieve a better economic and environmental performance. Firstly, the complete discreteness of equipment capabilities had not been considered. It means that multiple units with different capacities cannot be selected for a type of equipment. Then, the ambiguity and subjectivity existing in decision-makers/stakeholders’ judgments on the importance of objectives are usually ignored. Finally, an easily understood and comprehensive environmental indicator based on life cycle perspective for system optimization had not been established. Thus, the aim of this study is to establish a mathematical framework to help the stakeholders select the optimal configurations, capacities, and operation conditions of CCHP system while narrowing the above three research gaps to avoid the sub-optimal solutions. Subsequently, a hypothetical case was used to verify the validity of the proposed model, along with analysis of system performance. The results indicate that the CCHP system is superior to the conventional systems, and the proposed mathematical model in this paper can improve the performance of CCHP system in terms of economy, environment, and energy

    Egress of HSV-1 capsid requires the interaction of VP26 and a cellular tetraspanin membrane protein

    Get PDF
    HSV-1 viral capsid maturation and egress from the nucleus constitutes a self-controlled process of interactions between host cytoplasmic membrane proteins and viral capsid proteins. In this study, a member of the tetraspanin superfamily, CTMP-7, was shown to physically interact with HSV-1 protein VP26, and the VP26-CTMP-7 complex was detected both in vivo and in vitro. The interaction of VP26 with CTMP-7 plays an essential role in normal HSV-1 replication. Additionally, analysis of a recombinant virus HSV-1-UG showed that mutating VP26 resulted in a decreased viral replication rate and in aggregation of viral mutant capsids in the nucleus. Together, our data support the notion that biological events mediated by a VP26 - CTMP-7 interaction aid in viral capsid enveloping and egress from the cell during the HSV-1 infectious process

    ABCC3 as a marker for multidrug resistance in non-small cell lung cancer

    Get PDF
    Multidrug resistance (MDR) contributes to the failure of chemotherapy and high mortality in non-small cell lung cancer (NSCLC). We aim to identify MDR genes that predict tumor response to chemotherapy. 199 NSCLC fresh tissue samples were tested for chemosensitivity by MTT assay. cDNA microarray was done with 5 samples with highest resistance and 6 samples with highest sensitivity. Expression of ABCC3 mRNA and protein was detected by real-time PCR and immunohistochemisty, respectively. The association between gene expression and overall survival (OS) was examined using Cox proportional hazard regression. 44 genes were upregulated and 168 downregulated in the chemotherapy-resistant group. ABCC3 was one of the most up-regulated genes in the resistant group. ABCC3-positive expression correlated with lymph node involvement, advanced TNM stage, more malignant histological type, multiple-resistance to anti-cancer drugs, and reduced OS. ABCC3 expression may serve as a marker for MDR and predictor for poor clinical outcome of NSCLC

    Design and control of pressure‐swing distillation for separating ternary systems with three binary minimum azeotropes

    Get PDF
    The separation of ternary nonideal systems with multi‐azeotrope is very important because they are often found in the waste of chemical and pharmaceutical industries, which is much more difficult due to the formation of multi‐azeotrope and distillation boundary. We propose a systematic procedure for design and control of a triple‐column pressure‐swing distillation for separating ternary systems with three binary minimum azeotropes. This procedure involves thermodynamic insights, a two‐step optimization method, and effective control strategy. The separation of tetrahydrofuran (THF)/ethanol/water is used to illustrate the capability of the proposed procedure. It is found that the pressure limits in columns can be determined through the analysis of residue curve maps, distillation boundary, and isovolatility curves. The optimal triple‐column pressure‐swing distillation is generated with the minimum total annual cost (TAC) of $2.181 × 106 in sequence A. The operating conditions are well controlled approaching their desired specifications in an acceptable time when disturbances occur

    Baseline Staging Tests Based on Molecular Subtype is Necessary for Newly Diagnosed Breast Cancer

    Get PDF
    Background: Bone scanning (BS), liver ultrasonography (LUS), and chest radiography (CXR) are commonly recommended for baseline staging in patients with newly diagnosed breast cancer. The purpose of this study is to demonstrate whether these tests are indicated for specific patient subpopulation based on clinical staging and molecular subtype. Methods: A retrospective study on 5406 patients with newly diagnosed breast cancer was conducted to identify differences in occurrence of metastasis based on clinical staging and molecular subtypes. All patients had been evaluated by BS, LUS and CXR at diagnosis. Results: Complete information on clinical staging was available in 5184 patients. For stage I, II, and III, bone metastasis rate was 0%, 0.6% and 2.7%, respectively (P \u3c 0.01); liver metastasis rate was 0%, 0.1%, and 1.0%, respectively (P \u3c 0.01); lung metastasis rate was 0.1%, 0.1%, and 0.7%, respectively (P \u3c 0.01). Complete information on molecular subtype was available in 3411 patients. For Luminal A, Luminal B (HER2−), Luminal BH (HER2+), HER2+ overexpression, and Basal-like, bone metastasis rate was 1.4%, 0.7%, 2.5%, 2.7%, and 0.9%, respectively (P \u3c 0.05); liver metastasis rate was 0.1%, 0.1%, 1.0%, 1.1%, and 0.9%, respectively (P \u3c 0.01); lung metastasis rate was 0.20%, 0%, 0%, 0.27%, and 0.9%, respectively (P \u3c 0.05). cT (tumor size), cN (lymph node), PR (progesterone receptor), and HER2 status predicted bone metastasis (P \u3c 0.05). cT, cN, ER (estrogen receptor), PR, and HER2 status predicted liver metastasis (P \u3c 0.05). cT, cN, and PR status predicted lung metastasis (P \u3c 0.05). Conclusion: These data indicate that based on clinical staging and molecular subtypes, BS, LUS and CXR are necessary for patients with newly diagnosed breast cancer

    Neonatal rhesus monkey is a potential animal model for studying pathogenesis of EV71 infection

    Get PDF
    AbstractData from limited autopsies of human patients demonstrate that pathological changes in EV71-infected fatal cases are principally characterized by clear inflammatory lesions in different parts of the CNS; nearly identical changes were found in murine, cynomolgus and rhesus monkey studies which provide evidence of using animal models to investigate the mechanisms of EV71 pathogenesis. Our work uses neonatal rhesus monkeys to investigate a possible model of EV71 pathogenesis and concludes that this model could be applied to provide objective indicators which include clinical manifestations, virus dynamic distribution and pathological changes for observation and evaluation in interpreting the complete process of EV71 infection. This induced systemic infection and other collected indicators in neonatal monkeys could be repeated; the transmission appears to involve infecting new monkeys by contact with feces of infected animals. All data presented suggest that the neonatal rhesus monkey model could shed light on EV71 infection process and pathogenesis
    corecore